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abstract

Evolution is rapidly gaining attention as an important driver of ecological process. Yet, evolution
via sexual selection has generally been omitted from this emerging synthesis. Our goal in this paper
is to illustrate causative links by which sexually selected traits affect fundamental ecological interactions
and processes. We summarize evidence, primarily from vertebrate studies under field conditions, which
shows: sexually selected traits have ecological effects; and that their evolution has diverse influences on
ecological systems. We conclude with a brief discussion of future research directions to encourage study of
sexual selection from a more integrative and eco-evolutionary perspective.

Introduction

S EXUAL selection, variance in repro-
ductive success arising from competition

for mating opportunities and fertilization
success, is a potent evolutionary force. Sexu-
ally selected traits (SSTs) evolve by sexual
selection and include a wide range of be-
havioral, morphological, and physiological
characters that increase performance in
competition for mate and fertilization suc-

cess (Andersson 1994). The extraordinary
form, structural complexity, and apparent
maladaptiveness of SSTs have drawn the at-
tention of theorists and empiricists for over
a century (Darwin 1871; Fisher 1930; Trivers
1972). Although nonecological (i.e., Fisher-
ian) models of sexual trait evolution have
existed since initial efforts to understand
how SSTs evolve (see Prum 2012), a particu-
larly productive approach to understanding
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how these adaptations evolve has been to
study sexual selection in an ecological con-
text (Emlen and Oring 1977; Grafen 1990;
Maynard Smith 1991; Endler 1993). Indeed,
it is widely appreciated that ecological fac-
tors generating fitness costs of mate compe-
tition, variability in resource availability, and
environmental heterogeneity are crucial un-
derpinnings of SST evolution and diversifi-
cation (Trivers 1972; Emlen and Oring 1977;
Maynard Smith 1991; Kokko et al. 2002;
Arnqvist and Rowe 2005; Emlen 2008; Maan
and Seehausen 2011; Ryan and Cummings
2013; Servedio and Boughman 2017; Rico-
Guevara and Hurme 2019). The resulting
integration of sexual selection and ecology
constitutes the model framing our contem-
porary understanding of how SSTs evolve
and diversify.

But an emerging synthesis—eco-evolutionary
dynamics—has identified some overlooked
aspects of this ecological model of sexual se-
lection. Amajor objective of eco-evolutionary
perspectives is to account for interactions
between ecological and microevolutionary
processes (Hairston et al. 2005; Lankau 2011;
Schoener 2011; Hendry 2016). This broad
and integrative model has successfully illus-
trated the diverse ways in which microevolu-
tion can influence ecological processes and
patterns, from population growth to ecosys-
tem function. It has also revealed numerous
gaps in evolutionary ecology research pro-
grams, both theoretical and empirical (Mc-
Peek 2017). An obvious bare spot involves
sexual selection—specifically, a lack of re-
search illustratinghow sexual selectionmight
influence ecological process and pattern
(Svensson 2018). Why this apparent over-
sight exists is at first puzzling; surely sexual
selection would have widespread and potent
ecological consequences? After all, sexual se-
lection can drive the evolution of intraspe-
cific phenotypic diversity (Gross 1996; Sih
et al. 2004; Svensson et al. 2009; McKinnon
and Pierotti 2010; Servedio and Boughman
2017; Rico-Guevara and Hurme 2019), gen-
erate fitness costs for one or both sexes via
sexual conflict (Clutton-Brock et al. 1982;
Arnqvist and Rowe 2005), promote adapta-
tion (Agrawal 2001; Whitlock and Agrawal
2009; Agrawal and Whitlock 2012; Servedio

and Boughman 2017), and influence the
evolution of traits (e.g., body size, aggres-
sion) already linked to fundamental ecologi-
cal processes (King 1973; Peters 1983; Elser
et al. 1996; Woodward et al. 2005; Réale et al.
2007).

Thus, it appears that ecological conse-
quences of sexual selection are likely. But
despite a reasonable expectation that sexual
selectionwill have pervasive effects on ecolog-
ical systems, attribution of ecological dynam-
ics to sexual selection is largely restricted
to a few model systems: red deer (Cervus
elaphus; Clutton-Brock et al. 1982), Soay sheep
(Ovis aries; Clutton-Brock and Pemberton 2004),
and red grouse (Lagopus lagopus; Mougeot
et al. 2003). Consequently, a broad analysis
of the effects of sexual selection on ecolog-
ical process and pattern does not exist—a
reality that seems to preclude a synthetic
eco-evolutionary model integrating sexual
selection dynamics.

Our objective here is to advance an eco-
evolutionary perspective on sexual selec-
tion. A full synthesis will require integrating
multiple aspects of ecology and evolution;
from trait-based approaches emphasizing the
direct and indirect effects of the evolved
phenotype to those emphasizing the effect
of sexual selection on genetic load (Agrawal
2001; Whitlock and Agrawal 2009; Agrawal
and Whitlock 2012). However, we focus
this review on the former and conducted
a broad literature survey for evidence that
SSTs influence ecological processes and
patterns. We relied heavily on vertebrate
studies conducted under natural or semi-
natural conditions (see Supplemental Ta-
ble 1, available at https://www.journals
.uchicago.edu/loi/qrb). This focus on ver-
tebrates is not meant to imply that other
taxonomic groups do not express SSTs with
ecological consequences—indeed they do
(Valiela et al. 1974; Caravello and Cameron
1987; Svensson et al. 2005; Gosden and
Svensson 2009; Smallegange and Deere 2014;
Godwin et al. 2018; Yun et al. 2018). Rather,
such circumscription reflects the scope our
own expertise and our goal of illustrating
ecological processes in natural systems. Al-
though our taxonomic scope is somewhat
narrow, our definition of ecological conse-
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quence is rather broad—and, in some cases,
the supporting links are admittedly specula-
tive. Because the focus of this review is on il-
lustrating diverse and important ecological
consequences of SSTs, not the processes un-
derling their evolution, we have structured
our review to emphasize three commonly
employed levels of ecological analysis: inter-
specific interactions and community dynamics,
population ecology: distribution, population
ecology: demography, and ecosystems before
moving on to discuss future opportunities for
research and some overall generalities.

Interspecific Interactions

and Community Dynamics

trophic ecology

Foraging traits are commonly subject to
evolutionary tension between viability and
sexual selection that can shape resource
capture efficacy (Emlen 2008; Rico-Guevara
and Hurme 2019). To date, most empirical
studies of foraging ecology do not consider
this complexity. Nevertheless, evidence for
sexual selection effects on trophic relation-
ships and foraging behaviors exist for a wide
range of systems and organisms (Supple-
mental Table 1). Below we review the effect
of SSTs on feeding relationships and discuss
ways in which SSTs affect more fundamental
aspects of foraging ecology: foraging rate
and optimal diet. We consider two routes
by which sexual selection can influence tro-
phic ecology: direct and indirect. Direct
links arise when traits used in feeding evolve
by sexual selection. For example, the evolu-
tion of enlarged canines or increased bite
force evolved by intrasexual competition
for mating opportunities. Alternatively, indi-
rect effects are those inwhich sexual selection
influences foraging traits through pleiotro-
pic effects—for example, the indirect effect
of sexual selection on foraging behavior me-
diated by large male body size.

Many traits used in intraspecific interac-
tions such as fighting or coercive mating
are also involved with prey capture or han-
dling (Valiela et al. 1974; Emlen 2008; Mor-
ris and Carrier 2016; Rico-Guevara and
Hurme 2019). Therefore, evolution of SSTs

such as enlarged teeth (e.g., tusks) or in-
creased bite force should affect what organ-
isms eat. This dual role of foraging traits
is obvious in taxa where bite force contrib-
utes to mating success and foraging. In liz-
ards, for example, sexual selection on bite
force produces males with the ability to con-
sume prey requiring additional force (Vitt
and Cooper 1985; Gvozdík and Van Damme
2003; Lappin andHusak 2005; Huyghe et al.
2009; Vanhooydonck et al. 2010). Indeed,
many studies show that sexual selection on
foraging traits expands population trophic
niche width when males consume larger or
well-defended prey taxa, an example of a di-
rect effect of sexual selection on foraging
traits (Fritts and Sealander 1978; Birks and
Dunstone 1985; Vitt and Cooper 1985; Ver-
waijen et al. 2002; Vincent and Herrel 2007;
Scali et al. 2016; Figure 1a).

Although combat-mediated competition
between males seems to be a major driver
of trophic trait evolution, selection by fe-
male choice can also shape trophic morphol-
ogy. For example, in fishes, paternal care
is well developed and taxonomically wide-
spread, ranging from nest construction and
brood defense to mouthbrooding (Oppen-
heimer 1970; Ridley 1978; Baylis 1981; Gross
and Sargent 1985). Although parental care
can evolve by selection on male fecundity,
female discrimination among males based on
traits indicating the quality of parental care
introduces a sexual selection component to
the evolution of parental traits such asmouth-
brooding (Hoelzer 1989; Alonzo 2011). It
therefore seems likely that sexual selection
underlies evolutionary modification of tro-
phicmorphology in paternal-brooding fishes:
reduced gill raker number in cichlids (Lowe
McConnell 1959), as well as increased inmale
head size, jaw length, and buccal volume in
other fishes (Hess 1993; Barnett and Bell-
wood 2005; Hoey et al. 2012)—all of which
are linked to feeding performance (Wain-
wright and Richard 1995). Ultimately, sex-
ual selection on trophic traits in paternal-
broodingfishes remains unaddressed, as does
the effect of mouthbrooding morphology on
feeding performance and foraging ecology
(but see Lowe McConnell 1959; Hoey et al.
2012).
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In addition to direct selection on foraging
traits, sexual selection can influence diet in-
directly. Because organisms are genetically
and developmentally integrated, evolution-
ary pressures such as sexual selection will
impact a range of traits via correlated selec-
tion. Indeed, evolution of male body size, a
frequent target of sexual selection, affects
nearly all aspects of organismal biology, in-
cluding trophic ecology (Owen-Smith 1988;
Cohen et al. 1993; Layman et al. 2005; Brose
et al. 2006; Owen-Smith andMills 2008). These
indirect mechanisms arise because of the ef-
fect of body size on digestive physiology,
stress tolerance, locomotor performance, and
handling costs. Below, we briefly review a few
examples.

The effect of body size on digestive physiol-
ogy is a well-known driver of intersexual tro-
phic divergence arising through an indirect
effect of sexual selection. The Jarman-Bell

principle describes the positive allometric re-
lationship between body size and digestion
efficiency observed among ruminant species
(Geist 1974; Demment and Van Soest 1985).
The Jarman-Bell principle also helps explain
why large males in size-dimorphic ruminants
often consume lower quality foods and/or
spend less time foraging than females (Clutton-
Brock et al. 1987; Mooring et al. 2005; Pérez-
Barberia et al. 2008).

In aquatic air-breathing animals, sexual
selection for largemalebody size affects phys-
iological capacity to tolerate extreme physi-
cal environments. In size-dimorphic diving
animals such as pinnipeds and marine igua-
nas, larger males store more oxygen (Le
Boeuf et al. 1993; Kooyman and Ponganis
1998) and heat (Bartholomew 1966) than fe-
males. These intersexual physiological dif-
ferences indirectly contribute to divergent
diets whenmales forage inmore extreme en-

Figure 1. Three Examples of Intrapopulation Niche Divergence Among and Within Sexes Driven, in

Part, By Sexual Selection

Intersexual dietary niche variation in mature broadhead skink (Plestiodon laticeps); mean prey size differs be-
tween mature males and females with males consuming larger prey. Also note the greater variation of prey size
consumed by males, suggesting that males consume small and large prey (a). Intrasexual dietary niche variation
among male color morphs, blue (B), orange (O), and yellow (y), in the ornate tree lizard (Urosaurus ornatus). Sta-
ble isotope data show blue and yellow morph males occupy higher trophic levels than orange morph males (b).
Intra- and intersexual niche divergence in bluegill sunfish (Lepomis macrochirus). Polymorphic male types differ
in pelagic resource use, with satellite and sneaker males using littoral habitats and prey, while paternal males
and females tend to use pelagic habitats (c). Plots are redrawn from data in: Vitt and Cooper (1985; a), Lattanzio
andMiles (2016; b), and Colborne et al. (2013; c). Photo credits: Edward Prinzler (a), Alice Abela (top b),Matthew
Lattanzio (inset b), and Bryan D. Neff (c). See the online edition for a color version of this figure.
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vironments (usually colder and deeper) and
consume different prey taxa than females
(Trillmich and Trillmich 1986; Le Boeuf et al.
2000; McIntyre et al. 2010a,b).

Intersexual variation in body size can also
translate to divergent foraging niches when
locomotor performance is size-dependent.
In seabirds, sexual selection on male body
size is widespread (Serrano-Menses and
Székely 2006), as is intersexual diet varia-
tion (Lewis et al. 2002; Phillips et al. 2011;
Mancini et al. 2013). Although behavioral
differences between males and females
are often important, intersexual diet varia-
tion in sexually dimorphic seabirds is often
explained by the effect of body size on flight
and diving performance (e.g., Weimerskirch
et al. 2006, 2009). Ultimately, body size in-
fluences performance—when and where in-
dividual seabirds forage as well as what taxa
are consumed (Phillips et al. 2004; Lewis
et al. 2005; Weimerskirch et al. 2009; Quin-
tana et al. 2011; Camphuysen et al. 2015).

Sexual selection for large body size is also
likely to cause correlated shifts in foraging
trait sizes. Often, the larger sex will have
larger trophic traits (e.g., canine teeth, head
size). Given that the size (relative to prey)
of traits such as gape width and bite force
determine handling costs and prey suit-
ability, intersexual dietary variation driven
by indirect sexual selection on trophic traits
should be widespread (Gittleman and Van
Valkenburgh 1997). However, identifying
the indrect effect of sexually selected body
size on trophic ecology is complicated by
the fact that sex-specific allometries often
arise from direct sexual selection on trophic
morphology (e.g., as discussed above, large
males often have relatively strong bite force
due to sexual selection). These sex-specific
allometries make it difficult to determine
whether intersexual diet variation in size-
dimorphic species can be attributable to
body size variation or a relative shift in tro-
phic traits (e.g., a shift in relative bite force).
For this reason, an effect of sexually selected
body size on trophic ecology is perhaps
clearest in weasels (Mustela spp.), a group
exhibiting sexually selected, male-biased
size dimorphism and relatively minor allo-
metric variation between sexes in skull

length (Moors 1980; King and Moody 1982;
Dayan et al. 1989).Given that head size scales
with body size similarly in both sexes, the
fact that male weasels generally consume
larger prey taxa more frequently than fe-
males helps isolate the indirect contribution
of sexually selected body size to intersexual
variation in trophic ecology.

Female preference for ornaments and in-
dicators of parental care can also influence
trophic ecology indirectly. Elongated tails,
common targets of sexual selection in fishes
and birds, can reduce locomotor perfor-
mance (Balmford et al. 1993; Basolo and
Alcaraz 2003). And if prey capture depends
on the ability to capture fast-moving or ma-
neuverable prey, one might expect orna-
ment elaboration to shape the trophic niche.
Few data are available to test this predic-
tion; however, in the barn swallow (Hirundo
rustica), streamer length and the size of in-
sect prey are negatively correlated, suggest-
ing a performance-based link between
ornament evolution and foraging ecology
(Møller 1989; Møller et al. 1995a). Sex-
ual selection on nest size or quality can also
shape trophic morphology. For example,
male stickleback (Gasterosteus aculeatus)
build and defend nests in which females
spawn. Nest construction is aided by mor-
phological modifications, including en-
larged heads and protruding jaws in males
(Van Iersel 1953; Kitano et al. 2007), a bio-
mechanical link that McGee and Wain-
wright (2013) argue can drive intersexual
diet variation in stickleback. However, the
links between female choice, foraging trait
evolution, and trophic ecology remain to
be understood in this system.

At a more fundamental level, individuals
trade off foraging with other activities, rou-
tinely alternating between periods of feed-
ing and other behaviors. Much has been
written about the ecological effects of such
foraging tradeoffs, from individual fitness
to whole ecosystems (Lima and Dill 1990;
Werner and Peacor 2003; Schmitz et al.
2004; Ford et al. 2014). Indeed, the magni-
tude of predation risk effects on ecosystems
are now known to be on par with the direct
effects of predators (Preisser et al. 2005).
But competition formates also shapes forag-
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ing behavior, generating tradeoffs between
foraging and reproduction. For example,
when competition for mates is strong, males
reduce foraging rate and duration to pursue
reproductive opportunities (Durtsche 1992;
Cowles andGibson 2015).Outside of periods
of intensive sexual activity, this energetic def-
icit may be compensated by increased forag-
ing rate, either during or prior to intensive
mating activity (Ferretti et al. 2014)—a strat-
egy for enduring periods of high reproduc-
tive investment (Lindstedt and Boyce 1985;
Millar and Hickling 1990). High investment
in mate competition also negatively impacts
female foraging behavior, as illustrated by
poeciliid fishes in which persistent copula-
tion attempts and coercive mating by males
reduces female feeding rates (Magurran and
Seghers 1994; Pilastro et al. 2003; Köhler
et al. 2011; Tobler et al. 2011). In effect,
mate defence, direct combat, and mate
searching reduce and interfere with forag-
ing and energy acquistion in males and fe-
males. Indeed, experimental manipulation
of sex ratios in western mosquitofish (Gam-
busia affinis) reveal the effects of sex-specific
foraging ecology on prey community com-
position and food web structure—specifi-
cally, a dampening of top-down control in
male-biased populations—effects consistent
with sex-specific foraging behavior and/or
a negative effect of male harassment on
female foraging (Fryxell et al. 2015). Ulti-
mately, these foraging-reproduction trade-
offs drive temporal variation in the strength
of consumer-resource interactions—induc-
ing or relaxing trophic cascades depending
on the intensity of mate competition.

The production and maintenance of
SSTs also entails substantial nutritional de-
mands (Morehouse et al. 2010; Morehouse
2014; Snell-Rood et al. 2015). These costs of
SSTs can be energetic (Vehrencamp et al.
1989; Deutsch et al. 1990; Plaistow et al.
2003; Galimberti et al. 2007; Cummings and
Gelineau-Kattner 2009; Stoddard and Sala-
zar 2011), stoichiometric (Goos et al. 2016),
and macromolecular (Hill 1992; Hill et al.
2002; Svensson and Wong 2011; Sentinella
et al. 2013). Emerging research on nutri-
tional ecology routinely shows that nutrition-
ally optimal diets formales and females often

differ (Raubenheimer et al. 2009). These op-
timal diets reflect adaptive, sex-specific life-
history investments—increasing fecundity
in females and maximizing fertilization in
males. Substantial departure from these op-
tima can severely impact individual mating
success. But although the field of nutritional
ecology is steadily evolving—and offers a
much-needed framework for understanding
the evolution of foraging ecology—evidence
from natural systems is surprisingly limited
(Kohl et al. 2015). Indeed, a study of diets
inwild hihi (Notiomystis cincta) demonstrating
male preference for carotenoid-rich fruits
(carotenoids are incorporated into male
plumage displays) provides a rare example of
intersexual diet variation that seems to have
evolved by sexual selection on dietary prefer-
ences (Walker et al. 2014).

Hence, it remains unclear how common
sexually selected dietary biases are. If judged
by data from natural systems it seems that
although sexual selection should favor sex-
specific diets (such as when carotenoid in-
take limits reproductive success in guppies,
Poecilia reticulata, and house finches, Hae-
morhous mexicanus), sex-specific optimal diets
do not evolve or realize under field condi-
tions (Kohl et al. 2015). This supposition is,
however, provisional. Indeed, a substantial
body of experimental work with inverte-
brates routinely shows that sex-specific diets
do evolve as a consequence of sexual selection
(Lee et al. 2008; Maklakov et al. 2008; Lee
2010; South et al. 2011; Harrison et al. 2014;
Gray et al. 2018). Obviously, more work on
the role of sexual selection on sex-specific
diets is needed and we encourage addi-
tional research on the evolutionary ecology
of SSTs to incorporate nutritional frame-
works such as nutritional geometry and eco-
logical stoichiometry (Raubenheimer et al.
2009; Morehouse et al. 2010; Jeyasingh et al.
2014; Snell-Rood et al. 2015).

positive interspecific interactions:

seed dispersal and facilitation

Interspecific interactions such as preda-
tion and parasitism underpin much of the
theory and empirical evidence for the evo-
lution of sexual traits (Hamilton and Zuk
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1982; Endler 1983; Milinski and Bakker 1990;
Folstad and Karter 1992; Zuk and Kolluru
1998; Giery and Layman 2015). Yet, recent
research is expanding the types of ecological
interactions that SSTs influence, generally
indicating that the evolutionary ecology of
SSTs are relevant for a broad range of inter-
specific interactions and community dynam-
ics. The examples presented below show
SSTs can also mediate positive interspecific
interactions—seed dispersal and facilitation.

Seed dispersal mediated by SSTs follows
two modes. The first is the typical endo-
zoochorous pathway where seeds are dis-
persed postconsumption. The second mode
is similar, except fruits and seeds are moved
and aggregated without being consumed.
The former case is exemplified by several
species of bird (and at least one mammal)
that forage widely yet spend disproportion-
ate time at focal sites dedicated to sexual
display and mate choice, i.e., leks or singing
perches. This spatial bias—in defecation—
toward specific locations within the land-
scape generates clumped patterns of seeds
and seedlings at lekking sites (Théry and
Larpin 1993; Krijger et al. 1997; Cestari
and Pizo 2013a,b; Jadeja et al. 2013) and
treefall gaps where displays are focused
(Wenny and Levey 1998; Karubian et al.
2012; Karubian and Durães 2014). In an-
other case, male spotted bowerbirds (Ptilo-
norynchus maculatus) also disperse and
aggregate seeds in an interaction not medi-
ated by endozoochory. Like other bower-
birds, they gather forest materials to construct
bowers, complex structures subject to fe-
male choice (Borgia 1985). Fruits and seeds
aggregated at (and disposed near) bowers
can subsequently germinate, thereby alter-
ing nearby plant communities (Madden et al.
2012).

Understanding the effects of seed dis-
persal on forest dynamics involves many fac-
tors. Simply put, dispersal does not increase
parental fitness if seeds are aggregated at
suboptimal locations, i.e., those with high
seed(ling) densities or suboptimal abiotic
conditions. Nevertheless, birds that aggre-
gate seeds at display sites may be especially
valuable as dispersers if these negative ef-
fects are absent or are countered by positive

effects of being aggregated there. Indeed, as
shown in Karubian and Durães (2014) and
Karubian et al. (2016), dispersal to long-wat-
tled umbrellabird (Cephalopterus penduliger)
lek sites is a prime example of directed dis-
persal—deposition at sites favorable for es-
tablishment (Howe and Smallwood 1982).
In this system, males deposit large numbers
of seeds at lek sites (more than 50% of in-
gested seeds) and transport seeds farther
than females (18% farther for large-seeded
and 33% for small-seeded fruits). Although
such dense seed aggregations can limit seed-
ling fitness via negative density dependence,
experimental and observational data show
that lek-deposited seeds do not suffer from
negative density dependence as expected.
That is, seeds deposited at lek sites have
similar germination rates, seedling survival,
and growth as seeds deposited elsewhere be-
cause long-distance dispersal increases local
genetic diversity of seeds at lek sites, an effect
that ameliorates—to some degree—the neg-
ative effects of conspecific density (Karubian
et al. 2016).

These seed dispersal examples are gener-
ally derived from a few species of highly
frugivorous tropical birds. Yet, they clearly
show that habitual attendance at sexual
display sites (up to 95% of time in umbrella-
birds) can affect plant community struc-
ture in a variety of ways. Much remains be
learned about the effectiveness of dispersal
to display sites and its effect on forest struc-
ture, but data fromumbrellabirds andbower-
birds appear to show that directed dispersal
mediated by site-specific and long-termmale
breeding display sites can increase recruit-
ment for focal species and alter plant com-
munity structure. Given the abundance and
diversity of frugivorous birds in tropical for-
ests, we suspect that these examples reflect
a link between sexually selected behavior
and seed dispersal more common than the
low number of case studies might suggest.

Another example of positive interactions
comes from rivers and streams of North
America. Male cyprinid fishes in the genera
Semotilus, Campostoma, Nocomis, and Notropis
build large, mounded, silt-free structures
of stone and gravel at the tail end of pools
(Ross 1977; Ross and Reed 1978; Vives 1990;
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Sabaj et al. 2000). Part nest, part display
structure, males actively tend, solicit spawn-
ings at, and protect eggs laid in their
mounds. These structures are also hubs of
spawning activity for a variety of fishes. For
example, in the Virginia stretch of New River,
U.S., 11 species of nest-associated fishes were
recorded spawning in Nocomis spp. mounds
(Pendleton et al. 2012). Moderately sized
and abundant, nest mounds are a conspicu-
ous feature of shallow lotic waters; however,
the foundational ecological role of mound-
building cyprinids has only recently garnered
much excitement from ecologists. Neverthe-
less, recent research suggests that these
mounds provide limited (protected and silt-
free) spawning habitats for other cyprinid
species, some of which rarely spawn away
from heterospecific mounds (Pendleton et al.
2012; Peoples and Frimpong 2013). The re-
sulting pattern is one in which the presence
of nest-associate fishes is contingent on the
existence of silt-free nesting habitats created
by mound-building cyprinids; a keystone in-
teraction detectible at basinwide scales (Peo-
ples et al. 2015; Peoples and Frimpong 2016).

A greater appreciation for the role of pos-
itive interactions in community and ecosys-
tem dynamics is still emerging (Stachowicz
2001; Bruno et al. 2003). Although we think
the examples presented above are compel-
ling, in general, we found relatively few stud-
ies illustrating a positive effect of SSTs on
heterospecifics. We also note that the range
of interactions uncovered is quite narrow—
seed dispersal in tropical birds and habitat
creation in lotic minnows. Nevertheless, ad-
ditional research on facilitation is likely to
yield more insights for two reasons. First,
seed dispersal and habitat modification are
taxonomically and geographically widespread,
suggesting that positive interactions medi-
ated by SSTs are likely to be quite common.
Second, other positive interactions are likely
to emerge with additional study. For exam-
ple, in laboratory trials, several species of
newts (Lissotriton vulgaris, L. helveticus, Triturus
cristatus, and T. marmoratus) exhibit positive
phonotactic responses to the mating calls of
sympatric anurans (Diego-Rasilla andLuengo
2004, 2007; Pupin et al. 2007; Madden and
Jehle 2017). Whether orientation toward the

mating calls of heterospecifics facilitates loca-
tion of high-quality breeding habitats has yet
to be evaluated. Indeed, further attention to
positive heterospecific interactions is likely
to uncover a variety of community-level conse-
quences of SSTs.

parasites and disease dynamics

Few patterns in animal ecology are as per-
vasive as the highly aggregated distribution
of parasite infestations in host populations
(Shaw and Dobson 1995). There is remark-
able heterogeneity among individuals in
the prevalence, intensity, and diversity of
parasite burdens. However, infestation vari-
ation is also regularly seen among demo-
graphic classes, particularly age and sex
(Wilson et al. 2003). Although not univer-
sal (Kiffner et al. 2013), the prevalence (fre-
quency of hosts infected) and intensity
(number of parasites per host) of parasite
infestation is often higher in adult male
birds (Isomursu et al. 2006; Robinson et al.
2008), mammals (Schalk and Forbes 1997;
Ezenwa 2004; Morand et al. 2004), amphib-
ians (Dare and Forbes 2008), reptiles (Cox
and John-Alder 2007; Godfrey et al. 2010),
and fish (Reimchen and Nosil 2001). In ad-
dition, male-biased infections span a range
of micro- and macroparasites, including vi-
ral, bacterial, protozoan, and arthropod or-
ganisms (Poulin 1996; Zuk and McKean
1996; Moore and Wilson 2002; Robinson
and Klein 2012).

A popular and long-standing explana-
tion for male-biased infection is that phys-
iological costs underlying SST production
suppress male resistance to infection by par-
asites and other disease-causing organisms
(Hamilton and Zuk 1982; Folstad and Karter
1992; Klein 2004; Klein and Flanagan 2016).
The mechanisms underlying these immuno-
logical costs are diverse, complex, and nonex-
clusive (reviewed in Jacobs and Zuk 2012).
But, in general, they include one or more of
the following: sex hormones such as testoster-
one are immunosuppressive, immunoprotec-
tivemacromolecules suchas carotenoidsused
in sexual trait production are limited, and
allocation of energy to mate competition re-
duces immune function.Consequently,males
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must trade off investment in sexual fitness
against the viability costs of lowered immune
function and corresponding infection vul-
nerability (SheldonandVerhulst 1996;Olson
and Owens 1998; Stoehr and Kokko 2006).
However, years of ambiguous and often con-
flicting empirical results obscure the mech-
anistic links between sexual selection and
infection vulnerability.

Despite this prolonged uncertainty, evi-
dence that physiological costs of sexual trait
expression underpin immunological vulner-
ability and pervasive male-biased infections
is growing stronger (Roberts et al. 2004; Ja-
cobs and Zuk 2012; Foo et al. 2017). Yet the
importance of sex-specific physiology for par-
asite population dynamics remains unclear.
Although male vulnerability can increase in-
fection prevalence and intensity, without
mechanisms that describe transmission het-
erogeneity, a purely physiological model is
incomplete (Zuk and McKean 1996; Wilson
et al. 2003; Hawley and Altizer 2011; Hawley
et al. 2011; Ezenwa et al. 2016). A more eco-
logical model is needed to account for het-
erogeneity in exposure and transmission
rates (Zuk and McKean 1996).

Exposure and transmission rates com-
monly influenced by traits evolved by sexual
selection: high movement rates, large home
range, persistence at mating sites, intra-
sexual aggression, high mating rates, and
large body size (Tinsley 1989; Olsson et al.
2000; Grear et al. 2009; Godfrey et al. 2010;
Devevey andBrisson 2012). For example, us-
ing experimental manipulations of sex-
specific infection Ferrari et al. (2004) and
Grear et al. (2012) showed that removal of
female parasite infections in yellow-necked
mice (Apodemus flavicollis)had a negligible
effect on male infections, while removal of
male infections led to a drastic reduction
in female infection prevalence and inten-
sity. Because sex-biased infections were not
apparent in the untreated control plots,
these studies clearly suggest that physiologi-
cal vulnerability mechanisms are not driving
the observed effect of males on parasite per-
sistence in these systems. Rather, the infec-
tion amplifying effect of males was driven
by ecological mechanisms that increased ex-
posure for both sexes—via high conspecific

contact rates (Randolph 1977; Ferrari et al.
2007; Perkins et al. 2008) or high contact
frequencies with intermediate hosts (Luong
et al. 2009; Grear et al. 2012). Here, the
evolutionary effect of sexual selection on
male behaviorsmediates the ecologicalmech-
anism of parasite transmission, providing a
cleardemonstration that sex-dependentphys-
iological vulnerability is not necessary for
the perpetuation of pathogen populations by
males.

More often than not, physiological mech-
anisms and ecological mechanisms coincide
(Hawley et al. 2011). Population dynamics
of Ixodes ticks (Salvador et al. 1996; Olsson
et al. 2000; Hughes and Randolph 2001),
nematodes (Seivwright et al. 2005; Mougeot
et al. 2006), and hantaviruses (Glass et al.
1988; Bernshtein et al. 1999; Mills et al.
1999; Olsson et al. 2002; Hinson et al. 2004;
Easterbrook et al. 2007; Adler et al. 2008;
Hannah et al. 2008; Amman et al. 2013;
Khalil et al. 2014) clearly involvemale vulner-
ability and behavior. Indeed, without the
combination of mechanisms many of these
host-parasite systems are projected to simply
fade out. Tick-borne encephalitis (TBE), for
example, is a well-known tick-borne disease
in which host vulnerability and high expo-
sure are required for TBE persistence. Spe-
cifically, because Ixodes tick hosts, wood
mice (A. sylvaticus), and bank voles (Myodes
glareolus), do not sustain systemic TBE infec-
tions, vector-vector transmission between syn-
chronously feeding (co-feeding) Ixodes ticks is
necessary for TBE persistence (Randolph
et al. 1996, 1999; Randolph 2011). It is the
large aggregations of ticks on male rodents,
products of immunosuppression and high
tick exposure, which facilitate vector co-
feeding crucial for TBE transmission (Tal-
leklint and Jaenson 1997; Randolph et al.
1999; Hughes and Randolph 2001; Harrison
et al. 2010; Cagnacci et al. 2012). Without
the contribution of immunosuppression and
high tick exposure driven by sexually selected
male physiology and behavior, Perkins et al.
(2003)estimateTBEtransmissionpotentialde-
clines 74%, probably causing TBE to fade out.

Similarly, males are key hosts in the per-
petuation of hantaviruses (Mills et al. 1999;
Robinson and Klein 2012; Khalil et al. 2014).
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Males tend to exhibit higher infection vulner-
ability and maintain infectiousness for longer
periods than females. Although not universal
(e.g., Clay et al. 2009),most newhantavirus in-
fections occur during violent interactions be-
tween adult males and reproductive contact
between adult males and females (Glass et al.
1988; Bernshtein et al. 1999;Olsson et al. 2002;
Hinson et al. 2004; Klein et al. 2004; Easter-
brook et al. 2007; Adler et al. 2008; Amman
et al. 2013; Khalil et al. 2014). Interestingly,
transmission is amplified by virus-mediated
manipulation ofmale behaviors—driving hy-
peraggressive male-male interactions when
hosts are most infectious (Klein 2003; Klein
et al. 2004), and increasing movement rates,
although this latter mechanism is less clear
(Escutenaire et al. 2002; Amman et al. 2013).
Thedataclearly indicatethathantavirus infec-
tion amplifies male physiology and ecology in
ways thatdampendensity-dependent transmis-
sion, therefore promoting hantavirus persis-
tence during periods of low susceptible host
densities (Adler et al. 2008; Luis et al. 2012;
Kallio et al. 2013).

Understanding the role of host hetero-
geneity in parasite infections is critical for
determining fundamental components of
wildlife disease and parasite dynamics (Zuk
and McKean 1996; Woolhouse et al. 1997;
Wilson et al. 2003). The fact that relatively
few key individuals host and/or transmit a
majority of parasite infections has been cru-
cial for determining how parasites persist
(Woolhouse et al. 1997; Lloyd-Smith et al.
2005; Tompkins et al. 2011; Godfrey 2013;
White et al. 2017). Our scan of this large lit-
erature features cases in which SSTs contrib-
ute to a disproportionate impact of host sex
in a variety of host-parasite systems—not a
particularly new finding, but an important
one to illustrate here (Zuk and McKean
1996; Jacobs and Zuk 2012). These studies
suggest that males are key hosts because
their sexually selected physiology makes
themhighly susceptible to infection (physio-
logical mechanism) and their sexually se-
lected ecology increases parasite encounter
and transmission rates (ecological mecha-
nism). Indeed, our brief review of the topic
also shows that sex-biased infection preva-

lence and intensity are not the only ways that
males impact parasite populations. Rather,
the cases we focus on here suggest many par-
asite populations aremaintainedby SSTs that
simply amplify transmission rates between in-
fected and susceptible individuals (Tinsley
1989; Ferrari et al. 2004; Perkins et al. 2008;
Grear et al. 2009, 2012, 2013; Luong et al.
2009; Godfrey et al. 2010; Godfrey 2013;
Ezenwa et al. 2016). Nevertheless, ecological
and physiological mechanisms often co-oc-
cur, reinforcing the effect of males in disease
dynamics such as TBE and hantaviruses. So,
although the individual characteristics that
make a fraction of the population more vul-
nerable to infection and/or more likely to
transmit infections varies among systems,
key hosts are usually characterized by one
or more of the following: immunological vul-
nerability, high contact rates with infectious
stages, and high contact rates with vulnera-
ble individuals (Lloyd-Smith et al. 2005;
Paull et al. 2012). The correspondence be-
tween these traits and those targeted by sex-
ual selection is in part what makes males a
key demographic in the perpetuation of
many zoonoses.

reproductive interference

Heterospecific sexual activity has long in-
terested evolutionary biologists investigat-
ing speciation (Servedio and Noor 2003;
Coyne and Orr 2004). The ecological impli-
cations of heterospecific sexual interaction,
called reproductive interference (RI), have
only recently garnered serious attention
from ecologists (Gröning and Hochkirch
2008; Burdfield-Steel and Shuker 2011;
Kyogoku 2015; Grether et al. 2017). RI con-
stitutes a diverse set of heterospecific inter-
actions but can be divided into indirect
and direct reproductive interference. In a
classic example of indirect reproductive in-
terference, heterospecific male frogs inter-
fere with each other’s call transmission
when they overlap—in time, space, and
acoustic properties—sufficiently to mask or
“jam” the sexual display of one or both spe-
cies (Gerhardt 1994). Thus, signaling males
indirectly interfere with various hetero-
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specific reproductive behaviors such asmate
attraction, territorial defense, and perhaps
female preference. Most other examples of
RI includemore direct interactions between
heterospecifics: same-sex aggression, court-
ship, attempted mating, mating and, at the
far end of the spectrum, hybridization (re-
viewed in Gröning and Hochkirch 2008).
Direct interferences often resemble instances
of mistaken identification of heterospecifics
as potential mates. They can arise from: fe-
male preferences for heterospecific SSTs or
evolutionofhighmating rates inmales (Burd-
field-Steel and Shuker 2011). Both of these
direct interference mechanisms can have
negative fitness consequences for one, or
both, species involved (but see Schlupp et al.
1994; Castillo et al. 2010). Here, we focus on
RI occurring as a consequence of hetero-
specific reproductive interactions arising from
sexually selected male behaviors rather than
female preference.

Given the fitness consequences of hetero-
specific reproductive efforts, the evolutionary
import of RI seems quite clear. For example,
whereRI is strong, such as regions of sympatry
between closely related and/or phenotypi-
cally similar species, reproductive character
displacement—an adaptive evolutionary re-
sponse abating costs of deleterious hetero-
specific reproductive interactions—is favored
and may foster coexistence (e.g., Lemmon
2009). Evidence for reproductive character
displacement is building, as is understanding
of the heterospecific reproductive interac-
tions (i.e., RI) that drive its evolution (Pfen-
nig and Pfennig 2012). Now emerging is a
greater appreciation of the ecological con-
sequences of RI in species for which repro-
ductive character displacement and species
recognition mechanisms are insufficient for
complete behavioral and/or reproductive
isolation (Grether et al. 2017). Specifically,
RI can reduce individualfitness by costly ener-
getic expenditure, increased physical injury,
lost opportunity (reproduction or other-
wise), and outbreeding depression (Rhymer
and Simberloff 1996; Randler 2002; Tynk-
kynen et al. 2005; Largiadèr 2007; Kishi
2015). If sufficiently intense or prolonged,
the consequence of these “mistakes” can

have negative impacts on population mean
fitness and persistence (Best et al. 1981; Ri-
beiro and Spielman 1986; Dame and Petren
2006).

At present, a majority of empirical evi-
dence for RI comes from experiments with
model organisms such as seed beetles (e.g.,
Kishi et al. 2009). Nevertheless, well-docu-
mented declines in several species illustrate
the strong deleterious effects of RI in natural
systems. The clearest demonstrations of eco-
logical consequences of RI includes cases in
which species are displaced, due in part to
asymmetrical reproductive interference fol-
lowing range extensions by closely related
species (Bolger and Case 1992; Rhymer and
Simberloff 1996; Dame and Petren 2006).
Below, we review two cases in which direct
forms of RI driven by male-biased hetero-
specific interaction have strong effects on
wild populations. In all of these cases, traits
mediating RI are SSTs: male-male aggres-
sion, large male body size, male courtship in-
tensity, and forced copulation. Although an
updated review of the ecological effects of hy-
bridization and outbreeding depression is
needed, we do not cover it here.

The pervasiveness of resource competition
makes it a prime explanation for spatial and
temporal patterns in species distributions
and abundances (Hardin 1960; Diamond
1978; Schoener 1983). Yet, RI can produce
ecological patterns thatmimic resource com-
petition, i.e., displacement, exclusion, and
extinction. This is particularly clear in the
rapidly shifting pantropical distributions of
house geckos, a group of phenotypically sim-
ilar, reproductively isolated lizards (Hemida-
ctylus turcicus, H. mabouia, H. frenatus, and H.
garnotii). The distribution and abundances
of these ecologically similar species continues
to shift—most notably through local displace-
ment ofH. garnotii—a parthenogenic species
often among the first to invade anthropogenic
ecosystems. Initial studies (Bolger and Case
1992; Petren et al. 1993; Case et al. 1994) con-
cluded that displacement was mediated by
frequent agonistic interactions between male
H. frenatus and the all-femaleH. garnotii—that
is, interference competition over foraging
sites. Later, a similar experiment performed
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by Dame and Petren (2006) found little sup-
port for resource competition between these
species. Rather, they conclude that H. garnotii
exclusion is driven by RI; specifically, persis-
tent heterospecific courtship andcopulations
by male H. frenatus. Whether the wave of H.
garnotii replacement is driven entirely by RI is
not clear.However, these data do suggest that
coexistencemodels excludingRI are likely in-
complete for phenotypically and ecologically
conserved taxa such asHemidactylus geckos.

In the example above, RI was mediated by
male-female sexual harassment and copu-
lation costs—a combination of behaviors
and physical interactions negatively affecting
female viability and perhaps fecundity. Be-
cause one of the species was parthenogenetic
therewasno riskof fertilization, and therefore
no risk of indirect fitness costs (i.e., outbreed-
ing depression). However, many well-known
cases of RI include multiple interference
mechanisms underlying direct and indirect
fitness costs (Gröning and Hochkirch 2008).
For example, rangewide decline of European
mink (Mustela lutreola) has been linked to per-
vasive existential threats such as habitat loss
and intraguildpredationby introducedAmer-
ican mink (M. vison; Fournier et al. 2007;
Põdra et al. 2013). However, RI may also con-
tribute to the decline of the European mink.
RI is important here because males of two
other mustelids, Americanmink and polecats
(M. putorius), outcompete the smaller Euro-
peanminkmales for access to females (Maran
and Henttonen 1995; Cabria et al. 2011). In
turn, theseheterospecificpairingshaveunique
deleterious effects on European mink pop-
ulations.Minkpairings(European×American)
reduce European mink birth rates because
resulting embryos are resorbed (Maran and
Henttonen 1995). So, although hybrid
offspring are not produced, reproductive
opportunities are “used up.” Alternatively,
polecat matings (European mink × polecat)
do result in hybrid offspring, a hybrid sink
that exacerbates low reproductive success in
an already sparse European mink popula-
tion. In all likelihood, multiple fitness costs
of RI involving American mink and polecats
contribute to the declining European mink
population (Lodé et al. 2005; Cabria et al.
2011).

Much remains to be learned about the eco-
logical consequences of RI under natural con-
ditions (Burdfield-Steel and Shuker 2011;
Cothran 2015). Nevertheless, evidence clearly
indicates that heterospecific mating is an im-
portant mechanism underlying coexistence
patterns and community assembly processes
(Bull 1991; Thum 2007). Modeling efforts
(Ribeiro and Spielman 1986; Kuno 1992),
and the prevalence of reproductive character
displacement, suggest that RI shapesmany as-
pects of species ecology (Brown and Wilson
1956; Grether et al. 2009, 2013; Pfennig and
Pfennig 2009). But because RI can mimic re-
source competition the importance of RI is
likely underestimated, especially in communi-
ties that include species with strong sexual se-
lection and imperfect species recognition.
Whether RI will substantially impact our un-
derstanding of interspecific interactions and
species coexistence remains to be seen.

Population Ecology: Distribution

How individuals are distributed in space
reflects a range of ecological factors. Individ-
uals are both repelled by and attracted to
conspecifics, heterospecifics, resources, and
abiotic conditions (Allee 1931; Brown and
Orians 1970). Resulting patterns of space
use within populations often reflect shared
ecological forces within, and divergent eco-
logical forces between, demographic classes
such as sex. Sex-specific distribution patterns
within populations often emerge as a conse-
quence. Indeed, several types of sex-specific
distribution: sexual segregation, sex-specific
distribution, sex-biased arrival, and differen-
tial migration are well known and have been
the focus of research for decades (Brown
1969; Fretwell and Lucas 1969; Brown and
Orians 1970; Morbey and Ydenberg 2001;
Ruckstuhl and Neuhaus 2002; Wearmouth
and Sims 2008). Despite decades of atten-
tion, a systematic treatment of the various pat-
terns and processes underlying sex-specific
distributions has yet to emerge (Ruckstuhl
2007). Such an effort is beyond the scope
of this review. However, below we briefly
examine how SSTs influence the spatial dis-
tribution of populations. We structure our
treatment around an important prediction
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of sexual selection dynamics—sex-specific
distribution by resources.

distribution by resources

The spatial distribution of individuals is a
fundamental component of sexual selection
theory. In polyandrous or polygynous spe-
cies, mating opportunities determine, to a
large extent, the quality of occupied space
for the limited sex (males, in polygynous spe-
cies). However, for the limiting sex (females,
in polygynous species), food, predation, and
suitable abiotic features are thought to be the
primary factors determining space use (Em-
len andOring 1977). Therefore, selection on
matingopportunities shoulddecouple space
use from resource distribution in a predicta-
ble sex-specific manner: the distribution of
females depends on resource dispersion (e.g.,
spatial variation in food abundance) while
males distribute themselves according to mat-
ing opportunities as predicted by Emlen and
Oring (1977). Here, we briefly scan the liter-
ature for support of this prediction (here-
after, the EO assumption).

Evidence for population distribution by
sex-specific resources is best illustrated in ro-
dents where long-term studies and experi-
mental manipulations have been used to
assess the controls of sex-specific distributions
(Ostfeld 1986, 1990). Generally, the EO pre-
diction is supported in polygynous rodents:
females tend to match the distribution of re-
sources while males distribute themselves
according to reproductive opportunities (e.g.,
Myllymäki 1977;Ostfeld1985; Ims1988;Mont-
gomery et al. 1991). Interestingly, male distri-
butions do not necessarily match female
space use because aggressivemale-male com-
petition can disrupt the ability of males to
track female location directly, ultimately re-
sulting inoverdisperseddistributionsofmales
(Ostfeld 1990). For example, an experimen-
talmanipulationof resources(e.g., food)dem-
onstratedthathomerangesizeandoverlapfor
female California voles (Microtus californicus)
were mediated by food resources, but male
home ranges were not (Ostfeld 1986). Cou-
pled with field data, these data suggest that
the unresponsiveness of male spatial distri-
bution to additional food and the shifting

distribution of females indicate that male
space use is mediated by male-male aggres-
sive competition over access to females (Ost-
feld et al. 1985). Sex-specific space use in the
San Pedro side-botched lizard (Uta palmeri)
follows a similar pattern: males maximize av-
erage male-male distance while female spac-
ing responds to the distribution of food
resources (Hews1993). Interestingly, theopti-
mal distribution of males appears to arise
from a compromise between maximizing
overlap with female distributions and maxi-
mizing distance from competitors.

In many taxa, sex-specific space use varies
over time if mating opportunities are tempo-
rary (e.g., rookeries, leks, or synchronous es-
trous). In theses cases, seasonal fluctuation
in mating opportunity coupled with diver-
gent physiology and life history of males and
females can produce cycles of sex-specific
spacing: males follow female distributions
when reproductive opportunities arepresent,
and then redistribute over the remainder of
the year. In ruminants such as red deer, this
temporal signature is quite clear. Males and
females routinely segregate outside of the
breeding season—with females often con-
strained to overgrazed patches of high-quality
food (Clutton-Brock et al. 1982, 1987; Main
2008). Similarly, great bustards (Otis tarda)
also exhibit sex-specific distributions outside
of the breeding season. Once courtship and
mating are complete, male bustards, which
are many times larger than females, often
migrate several hundred miles to higher ele-
vations, presumably to escape the physiolog-
ical stress of lowland breeding grounds
(Alonso et al. 2009, 2016; Palacín et al. 2009;
Bravo et al. 2016). In both cases, sex-specific
variation in physiology, digestion efficiency
in red deer, and heat stress in great bustards
underlies population distributions outside of
the breeding season. Hence, redistribution
of males to costly or suboptimal habitats once
breeding opportunities return supports the
sex-specific resource prediction.

Evidence for population distribution by
sex-specific resources also emerges from in-
tersexual variation in phenology. In migra-
tory taxa (best studied in birds), males often
depart nonbreeding grounds earlier, migrate
more rapidly (Myers 1981; Møller 1994; Ru-
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bolini et al. 2004), or use nonbreeding habi-
tats closer to breeding habitats (Ketterson
and Nolan 1976, 1983; Belthoff and Gauth-
reaux 1991; Cristol et al. 1999; Jenkins and
Cristol 2002). A common evolutionary expla-
nation for male-biased arrival timing, protan-
dry, is sexual selection: early males better
secure anddefendhigh-quality habitats against
conspecific males; early arriving males also
increase the potential for multiple matings
(Kokko 1999; Morbey and Ydenberg 2001).
However, early arrival can be a risky strategy.
Protandry can entail substantial energetic
costs, an increased risk of inclement weather
(Møller 1994), as well as increased predation
risk(Quinnetal. 2001).Nevertheless, theubiq-
uity of protandry in migratory birds and fish
suggest thatmales are deviating fromresource
suitability to a greater extent than females be-
cause of sexually selected territory acquisition
on breeding grounds (Møller 1994; Hassel-
quist 1998;Morbey andYdenberg 2001;Cop-
pack et al. 2006; Spottiswoode et al. 2006).
Indeed, the fitness benefits of temporal pri-
ority can be strong enough to producepartial
migration—an extreme form of differential
migration inwhich somemalesoccupybreed-
ing grounds year-round (Cristol et al. 1999;
Jenkins and Cristol 2002; Cagnacci et al. 2011;
Chapman et al. 2011).

Nonmigratory species can also differ in
temporal aspects of space use that match the
EOprediction. In specieswithperiods of inac-
tivity such as hibernation, early onset of activ-
ity (i.e., emergence protandry) canmaximize
matingopportunities(Clutton-BrockandVin-
cent 1991). The fitness benefits of early male
emergence includes earlier spermatogenesis
(Prestt 1971;Díaz et al. 1994;OlssonandMad-
sen1996;VeigaandSalvador2001), increased
potential for encountering females of higher
reproductive value (Bauwens and Verheyen
1985), and increased number of female en-
counters (Gregory 1974; Douglas 1979;Mich-
ener 1983, 1992; Graves and Duvall 1990;
Young1990; Sheriff et al. 2011, 2013). Sexual
selection can also drive the evolution of pro-
togyny (female arrive first) in nonmigratory
species. Many species breed prior to enter-
ing torpor—a scenario that should favor the
evolutionofprotogyny (Gregory1984; Senior
et al. 2005). Although data supporting sex-

biased arrival in fall-breeding animals are
sparse, Norquay andWillis (2014) show that
female little brown bats (Myotis lucifugus) en-
ter torpor(immergence)beforemales, apat-
tern we believe suggests sexually selected
phenological differences in late-season breed-
ers. Whether late immergence in males reflects
a strategy for maximizing reproductive interac-
tions is unclear, but given abundant evidence
forprotandry inother vertebrates, suchaneffect
seems likely for little brown bats and other spe-
cies that breed prior to prolonged periods of in-
activity.

In all of these examples, sexual selection
shapes population distribution in ways match-
ing the EOprediction.However, the observed
patterns of sex-specific spatial distributions
among taxa are also highly variable. In terri-
torial species, male-male competition has a
large effect on the distribution of males. In-
deed, even a spatial redistribution of females
has little effect on male distributions in
some cases. For example, the overdispersed
distributions of males in polygynous small
mammals might not appear to reflect the
distribution of females or food, but the influ-
ence of other males can be readily apparent
(Ostfeld et al. 1985; Ostfeld 1986). Similiarly,
sexual selection on temporal activity in mi-
gratory birds, fish, and mammals generates
sex-specific patterns of space use (protandry
and partial migration) that appear to depart
from the EO prediction. Furthermore, and
perhapsmost obviously, detecting sex-specific
distributions depends on the potential to
mate: sex-specific distributions should not
match the EO prediction when mating op-
portunities are absent. Indeed, temporal var-
iation in the opportunity to mate is often
accompanied by a departure from the EO
prediction in ruminants (Clutton-Brock et al.
1982, 1987; Deutsch et al. 1990; Crocker et al.
2012).

distribution despite resources

An important development in the evolu-
tionary ecology of sexual selection is an in-
creasing integration of sexual conflict theory,
specifically that sexual antagonisms com-
monly arise from divergent evolutionary in-
terests of the sexes (Trivers 1972). These
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conflicting interests drive the sexually se-
lected evolution of aggressivemalemating tac-
tics (sexual harassment and coercion) and
infanticide (Hrdy 1979; Palombit 2015). They
also drive the evolution of female defensive
strategies that dilute these costs (Agrell et al.
1998; Ebensperger 1998; Opie et al. 2013;
Lukas and Huchard 2014; Palombit 2015).
Females show a tendency to dilute the risk
of aggressive mating tactics and sexually se-
lected infanticide by altering their use of
space: isolating themselves or forming aggre-
gations. These risk-diluting strategies lead to
important deviations from optimal resource
use in females and departures from the EO
prediction.

Females often reduce risk by isolation—in-
creasing the distance between themselves
and males. For example, in brown bears
(Ursus arctos), African lions (Panthera leo),
andpuma(Felis concolor), infanticide is a com-
mon threat to young. Emerging evidence
shows that females with cubs minimize these
costs by occupying smaller home ranges and
using unproductive foraging areas where
male density is low (Packer and Pusey 1983;
Wielgus and Bunnell 1994, 2000; Dahle and
Swenson 2003; Ben-David et al. 2004; Bel-
lemain et al. 2006; Libal et al. 2011; Steyaert
et al. 2013; Keehner et al. 2015). Similarly, ag-
gressive male mating tactics can also drive fe-
male fish and dolphins into unproductive,
predator-rich, and physiologically stressful
habitats (Martin and da Silva 2004; Darden
and Croft 2008; Wearmouth et al. 2012;
Wallen et al. 2016). The general effect of
female isolation seems to be population over-
dispersion, with females occupying enemy-
free space in low-quality habitats.

Alternatively, females can reduce risk by
aggregating—decreasing the distance be-
tween themselves and conspecifics. For ex-
ample, coalitions of females, such as a pride
of lionesses, can reduce infanticide by repel-
ling invading males (Packer and Pusey 1983;
Packer et al. 1990). And in horses and zebras
(Equus spp.), mares that join harems are pro-
tected from harassment and infanticide by a
dominant stallion (Rubenstein 1994; Linkla-
ter et al. 1999; Sundaresan et al. 2007). Simi-
larly, cooperative defense of shared young
against infanticide can favor the formation

of male-female pairs in house mice (Mus
musculus; Palanza et al. 1996). Finally, just as
herding can dilute predation risk (Hamilton
1971; Sterck et al. 1997), dense aggregations
of females, suchas that seenatpinniped rook-
eries or same-sex fish shoals, dilutes the per
capita risk of infanticide and/or sexual ha-
rassment (LeBoeuf andMesnick 1991; Boness
et al. 1995; Galimberti et al. 2000; Pilastro
et al. 2003).

How individuals in populations use space
is controlled by resources as well as the distri-
bution of aggressive males, specifically those
increasing the risk of sexual harassment, co-
ercive mating, and infanticide. These results
suggest that a foundational assumption of
sexual selection systems—the EO predic-
tion—is generally supported except when
and where aggressive mating strategies are
common and infanticide risk is high. Under
those conditions, female space use appears
to depart from the distribution of resources,
favoring instead dispersion patterns that di-
lute risk through isolation or aggregation.

Population Ecology: Demography

Of the ecological dynamics for which sex-
ual selection might be important, demogra-
phy and population dynamics have received
the most attention. The traditional focus of
this research program has been to document
how sexual selection contributes to male-bi-
ased mortality and female-skewed sex ratios
in natural populations (Clutton-Brock et al.
1985; Clutton-Brock 1986; Promislow 1992;
Promislow et al. 1992, 1994; Tidière et al.
2015). Indeed, the expression of SSTs can
decrease male survival (Owen-Smith 1993;
Brooks 2000; Quinn et al. 2001; Costantini
et al. 2007), increase parasite burdens (Zuk
and McKean 1996), cause nutritional stress
and physical exhaustion (Mysterud et al.
2005), and lead to combat-related injury
(Christian 1971; Clutton-Brock et al. 1979;
Clutton-Brock 1982). However, recent analy-
ses and new insights have begun to modify
this consensus view on the role of sexual se-
lection in population dynamics.

First, meta-analyses of the fitness conse-
quences of SSTs suggest there is substantial
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variation in the viability costs of SSTs be-
cause condition-dependentmechanismsun-
derpin sexual trait expression ( Jennions et al.
2001; Kotiaho 2001). This may arise because
viability costs paid by individuals for the
development and expression of SST are pro-
portional to their physical condition. There-
fore, condition-dependent investment in
sexual selection should help mitigate the
ecological cost of SSTs. Indeed, one overall
finding of Jennions et al. (2001) is a positive
correlation between SSTs and survivorship
( Jennions et al. 2001). Second, an increasing
body of literature shows the viability costs of
SSTs can be ameliorated through the coevo-
lution of compensatory traits that neutralize
viability costs of SSTs (Oufiero and Garland
2007; Husak and Swallow 2011; Husak and
Lailvaux 2014). For example, unmitigated,
the aerodynamics of elongated tail feathers
used in sexual displays should hinder flight
performance (Balmford et al. 1993; Thomas
1993). Yet these fitness costs do not necessar-
ily accrue if selection on performance leads
to the evolution of compensatory traits such
as longer wings in male birds with long tails
(Balmford et al. 1994; Møller et al. 1995b).
Third, in many cases, predators are thought
to mediate the cost of SSTs (Endler 1983;
Quinn et al. 2001). However, SSTs do not al-
ways increase predation vulnerability. Rather,
SSTs can decreasemortality risk in some cases
by increasing handling costs and the likeli-
hood of predator injury (Mukherjee andHei-
thaus 2013). Certainly, there are many cases
in which large body size, increased locomo-
tor performance, and intrasexually selected
weapons render some prey too formidable
or otherwise unsuitable as prey (Sinclair et al.
2003; Emlen 2008; Owen-Smith and Mills
2008; Metz et al. 2018). For example, large
male body size in African elephants (Loxo-
donta africana; Joubert 2006) and bluegill
sunfish (Lepomis macrochirus)—largely a re-
sult of sexual selection—reduces male vul-
nerability to predators (Mittelbach 1981;
Hambright 1991), while sexually selected
locomotor performance inmale collared liz-
ards (Crotaphytus collaris) mitigates preda-
tion risk associated with territory defense
and conspicuous coloration (Husak et al.
2006; Husak and Lailvaux 2014). It is also

worth considering that behaviors favored
by intrasexual combat, aggression, and bold-
ness, can deter predators, especially when
coupledwith large size andweaponry (Hunt-
ingford 1976; Sih et al. 2004; Kirkwood and
Dickie 2005; Metz et al. 2018). Together, the
evolution of condition-dependent expres-
sion, compensation traits, andoffensive traits
may help explain positive correlations be-
tween SST expression and survivorship in
wild populations ( Jennions et al. 2001).

Despite these changing ideas about the
role of extrinsic costs of SSTs in population
dynamics, the historical focus on extrinsic
control is understandable. Because vital rates
such as female fertility are not limited by the
density of males in species with strong male
reproductive skew, males can be exempted
from populationmodels in some cases (Mys-
terud et al. 2002). This apparent insensitivity
of female vital rates and population growth
rate to male density tempts simplification of
population dynamics via the exclusion of
male vital rates. However, this assumption
can preclude important effects of males on
population dynamics, especially in species
with strong sexual selection (Mysterud et al.
2002; Milner-Gulland et al. 2003; Rankin
andKokko2007).This realizationhas helped
to revive interest in the effects of male behav-
ior on population dynamics. For the rest of
this section, we focus on evidence for intrin-
sic population regulation via SSTs. Specifically,
we explore the ways in which male-male ag-
gression, sexual harassment and coercion,
and sexually selected infanticide influence
vital rates in females and juveniles.

Aggression among males for control of
breeding territories and females can gener-
ate strong density-dependent population
regulation(Christian1961;Watson1967;Wat-
son and Jenkins 1968; Brown 1969; Krebs
and Myers 1974). Such aggressive interac-
tions are particularly common in small mam-
mals (Christian 1971) and birds (Moss et al.
1994; Searcy and Yasukawa 1995) and usually
peak during intense breeding activity (Sadleir
1965; Turner and Iverson 1973). These male-
driven aggressive interactions limit recruit-
ment by increasing juvenile mortality and
emigration, and reducing male immigration
(Sadleir 1965; Healey 1967; Mougeot et al.
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2003), especially at high population density
(Rose and Gaines 1976).

Reproductive females can also suffer sur-
vival and fecundity decreases due to sexually
selected male behaviors. Coercive mating
and harassment from aggressive males can
have devastating effects on female survivor-
ship and fecundity (Le Boeuf and Mesnick
1991; Hiruki et al. 1993; Réale et al. 1996;
LeGalliard et al. 2005, 2008). Todate, several
model systems have demonstrated that the
effects of sexual harassment on population
dynamics can be quite strong. For example,
Le Galliard et al. (2005, 2008) show that sex-
ual harassment and coercion by male com-
mon lizards (Zootoca vivipara) can generate
negative population growth rates in popula-
tions with male-biased sex ratios. Sexual ha-
rassment and coercion can also reduce
female fitness indirectly. In fishes, persistent
copulation attempts drive females into sub-
optimal habitats, substantially reducing fe-
male survivorship and fecundity (Magurran
and Seghers 1994; Croft et al. 2006; Darden
and Croft 2008; Wearmouth et al. 2012). In
general, sexual harassment and sexual coer-
cion seem to have substantial negative effects
on female viability and population growth
rate. Detailed studies in several systems re-
peatedly show strong negative effects on de-
mographic classes important for population
growth, female fecundity, and survival.

Sexually selected infanticide is a common
adaptation in polygynous mammals and can
have substantial effects on juvenile recruit-
ment (Hrdy 1979; Agrell et al. 1998; Packer
2000; Palombit 2015). Original work on the
demographic consequences of infanticide
was centered on smallmammals such as voles
and mice, specifically whether male aggres-
sion toward unrelated young could regulate
populations (Mallory and Brooks 1978; Web-
ster et al. 1981). In general, results show that
adult males reduced recruitment by killing
unrelated young, and driving emigration
(Gipps and Jewell 1979). These effects are
not limited to rodents (Lukas and Huchard
2014).Male brown bears (Ursus arctos), puma
(Felis concolor), and leopards (Panthera par-
dus) kill unrelated juveniles within their terri-
tories, a behavioral adaptation with direct
negative effects on population growth rate

(Swenson et al. 1997; Wielgus and Bunnell
2000; Whitman et al. 2004; Cooley et al.
2009; Balme et al. 2012; Gosselin et al. 2015).

Similar to trait-mediated interactions
(Preisser et al. 2005) the risk of infanticide
alonecanalsoreducepopulationgrowthrate.
Although the physiological mechanisms are
cryptic, some mammals adaptively reduce
maternal investment by suppressing fertility
(PackerandPusey1983)or terminatingpreg-
nancies when the risk of infanticide is high
(Labov 1981; Zipple et al. 2017). This latter
effect, called the “Bruce effect,” is activated
when pregnant females are exposed to unfa-
miliar males—presumably those most likely
to engage in infanticidal behavior (Bruce
1959). So far, polygynous mammals, includ-
ing primates (Roberts et al. 2012), rodents
(Hackländer and Arnold 1999), and un-
gulates (Berger 1983), have shown evidence
of this cryptic effect on female fecundity.
Although female suppression of fertility and
termination of pregnancies appears to be a rel-
atively widespread adaptation for mitigating
the cost of infanticide (Palombit 2015), the im-
pact of the Bruce effect on population dynam-
ics is unclear. However, in combination with
effects of infanticide on juvenile survival, sup-
pression of female fertility would exacerbate
the negative effects of infanticide on popula-
tion growth.

Male-male aggression, sexual harassment,
and infanticide routinelyhavenegative effects
onpopulationgrowthratesby increasingmale
mortality, increasing juvenile mortality and
emigration, and reducing female fecundity.
Based on these generalfindings, a reasonable
expectation is thatmale density is inversely re-
latedtopopulationsizeandgrowthrateintaxa
where aggressive mating tactics and infantici-
dal behaviors have evolved. Although such a
relationshipmay be true under some circum-
stances, detailed study of brown bear popula-
tions in North America and Europe have
revealed that a simple prediction such as this
will fail because it does not incorporate some
behavioral intricacies of infanticidal behavior.
Specifically, a series of studies have revealed
that increased male mortality does not lead
to a decline in infanticide. Instead, increased
adult male mortality increases infanticide
reates substantially, presumably because the
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rapid turnover of subdominant males creates
conditions that favor infanticide (Swenson
et al. 1997; Wielgus and Bunnell 2000; Belle-
main et al. 2006; Gosselin et al. 2015). Insights
such as these suggest that population-level
consequences of SSTs such as infanticide are
indeed substantial, and likely to vary across
contexts and taxa.

Ecosystems

material and energy flux

Linking individual organism traits to fun-
damental ecological processes, suchas energy
flux and nutrient cycling, can be challenging
(Elser 2006; Jeyasingh et al. 2014). Despite
conceptual integration of SSTs with ecosys-
tem frameworks (Morehouse et al. 2010;
Snell-Rood et al. 2015), empirical evidence
is generally lacking (Matthews et al. 2011).
An increasing interest in the ecological stoi-
chiometry of sexually dimorphic data is ad-
dressing this gap, however, progress has
been slow. Indeed, several SSTs are likely to
influence energy and nutrient cycling. First,
body size affects nutrient cycling: larger ani-
mals have higher storage and lower (per unit
body mass) excretion rates. Second, met-
abolic rate scales with body size (Hemming-
sen 1960) and should differ between sexes
in species with pronounced sexual size di-
morphism. Third, morphological variation
between sexes results in compositional differ-
ences in stoichiometrically distinct tissues
such as bone (Hendry and Berg 1999; Hall
et al. 2007). Fourth, stoichiometric needs re-
lated to SST development may drive feed-
backs on trophic ecology (Cothran et al.
2014; Goos et al. 2014, 2016). Intersexual var-
iation in body size and tissue composition
couldhave strong effects on theflowof energy
and material through ecosystems; but, at this
point, the data are simply too sparse to tell.

Sexually selected behaviors are also likely to
interact with morphological variation to drive
spatial and temporal heterogeneity in the dis-
tribution of energy and material. Consumer-
mediated patchiness in the distribution of
biogeochemical cycles are increasingly ap-
preciated sources of ecological heterogene-
ity (McClain et al. 2003; Bernhardt et al.
2017). Given that the distribution, behavior,

and physiology of animals are shaped by
sexual selection, SSTs should alter biogeo-
chemicalcyclesaccordingly.Forexample,ag-
gregations of courting birds (e.g., leks) can
occupy the same site for decades, likely al-
tering local biogeochemical cycles through
physical disturbance (Uy and Endler 2004)
and nutrient translocation (Scott 1942). In-
deed, dense aggregations of consumers have
been shown toaffect fundamental ecological
processes such as primary productivity at lo-
cal scales (Flecker et al. 2010; Layman et al.
2013); yet courtship aggregations have not
been investigated from this ecosystem-based
perspective (but see Archer et al. 2015).

ecosystem engineers

Structural changes tohabitats are also likely
to influence ecosystem processes. Many or-
ganisms modify physical features of their en-
vironment through extended phenotypes
subject to female choice (Schaedelin and
Taborsky 2009). Belowwepresent three case
studies that exemplify how SSTsmightmedi-
ate ecosystem-level consequences. The focal
organisms are well-known ecosystem engi-
neers that alter ecosystemprocesses through
environmentalmodificationandtargeted in-
terspecific interactions( Jonesetal. 1994). In
each case, the magnitude of the ecological
impact is generated or exacerbated by SSTs.
Nevertheless, the mechanistic linkages be-
tween sexual selection and ecosystem pro-
cess are somewhat speculative. We include
them here to promote additional study of
SSTs in the context of ecosystem processes,
striving towardamorecompleteunderstand-
ingofthemechanismsthatgiverisetoecolog-
ical patterns.

bioturbation and estuary

productivity

Estuaries provide ecologically andeconom-
ically important services and products often
driven by myriad chemical processes in sedi-
ments (Barbier et al. 2011). Burrowing inver-
tebrates turn over sediments, consequently
influencing a range of biogeochemical pro-
cesses (Katz 1980; Gribsholt et al. 2003; Wang
et al. 2010) that can influence a range of eco-
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system functions such as primary production
(Montague 1982; Bertness 1985; Smith et al.
2009). Indeed, an experimental halving of
the number of fiddler crab (Uca pugnax) bur-
rows in a coastal marsh halved aboveground
production of the dominant herbaceous veg-
etation, smooth cordgrass (Spartina alterni-
flora ; Bertness 1985). Burrow size alsomatters
for ecosystem function, with effects beingpro-
portional to the volumeof soil turnover (Wang
et al. 2010). Hence, we speculate that the
evolution of SST in a widespread and abun-
dant burower, the fiddler crab (Uca spp.),
may amplify the ecological effects of these
fundamental processes because sexual se-
lection has altered the number and size of
burrows.

Indeed, several studies show that sexual se-
lection appears to influence burrow number
and morphology in fiddler crabs. In U. capri-
cornis, burrow numbers increase when males
evict competitors from their burrows—a mo-
nopolizing adaptation that attracts females
and generates a net increase in the number
of burrows (Mautz et al. 2011). Females also
express preferences for burrow characteris-
tics. In U. tangeri, female preference for large
burrows could shape the morphology of
male burrows—especially their size (Latruffe
et al. 1999). Furthermore, a familiar target of
sexual selection, enlarged chela, increases
burrow size and alters their shape in U.
annulipes (Lim and Diong 2003; Lim et al.
2015; Tina et al. 2015). Ultimately, given that
ecological effects of crab burrows are propor-
tional to their size (Wanget al. 2010) andnum-
ber (Bertness 1985), sexual selection on fiddler
crab behavior and morphology is likely to con-
tribute to their per capita effect onbioturbation
and primary productivity.

algae farming and reef productivity

Effects of herbivores on reef ecosystems
are exceedingly complex (Ceccarelli et al.
2011; Burkepile et al. 2013; Shantz et al.
2015). Fishes such as damselfishes (Poma-
centridae) are engaged in intimate and
complex interactions with benthic algae
communities and coral (Ceccarelli 2007; Ir-
ving and Witman 2009; Hoey and Bellwood
2010). These small, highly territorial, and

brightly colored fish are abundant in shal-
low reefs systems throughout the tropics
and occasionally in temperate zones. Many
of the nearly 350+ species maintain exclu-
sive territories and are highly aggressive to-
ward conspecifics and heterospecifics that
approach them (Ceccarelli 2007). Ecologi-
cal and life-history traits within this speciose
group are highly variable (Hata and Nishi-
hira 2002; Hata et al. 2010); however, many
are well known for their habit of cultivating
algal “farms”—mats of filamentous algae on
which they feed (Ceccarelli et al. 2001).

Sexual selection is strong in damselfish
and successful males will often have multi-
ple egg clutches within their territories (Pe-
tersen 1995). In fact, the best predictor of
whether a female with spawn with a given
male is the existence of fresh eggs, which raises
the question: what traits engender that first
clutch? Although details of courtship are var-
iable among species, male territory quality is
often an important target of sexual selection
by female choice. Using a series of experi-
ments and observational studies on garibaldi
(Hypsypops rubicundus),Cortezdamselfish (Ste-
gastes rectifraenum), and beaugregory (S. leuc-
ostictus), several studies have demonstrated
female preference for algal turf quality, specif-
ically its density, thickness, andfilament length
(Sikkel 1988, 1995; Hoelzer 1990; Itzkowitz
and Slocum1994; Itzkowitz et al. 1995). These
results suggest that the algal farming adapta-
tions of damselfish are under strong sexual se-
lection.

Data on the broader ecological effects of
farms for these three species are not avail-
able. However, data from other damselfish
species show the dramatic effects of farms
on reef ecosystems. Algal farms can overgrow
existing coral, increase coral prevalence (Ca-
sey et al. 2014b; Vermeij et al. 2015), and re-
duce coral recruitment (Casey et al. 2014a;
Gordon et al. 2015). But the effects of farm-
ing on primary production are perhaps most
notable. A review shows that farms have 1-to-
29 times the algal biomass of surrounding
substrates and are more productive per gram
and unit area (Ceccarelli et al. 2001). Scaling
up to the reef scale, by covering approxi-
mately 22–70% of reef area, Ceccarelli et al.
(2001) estimate that damselfish farms con-
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tribute from 35–85% of reef-widemicroalgae
biomass, respectively, and boosted productiv-
ity by 28–66%. What proportion of the eco-
logical effect on primary production can be
attributed to sexual selection for farm quality
is unknown. Yet, if sexual selection enhances
the farm effect, by only a fraction, the impact
on reef-wide productivity is substantial.

disturbance and the african savanna

Elephants are important drivers of ecosys-
tem processes. Much, if not most, of this eco-
logical effect is mediated by tree damage:
broken limbs, stripped bark, and uprooted
trees. At small scales, tree damage benefits
other herbivores (Riginos and Grace 2008;
Valeix et al. 2011), small predators (Pringle
2008; Pringle et al. 2015), and can increase
plant diversity (Coverdale et al. 2016). How-
ever, at regional, or even continental scales,
elephant-mediated tree damage can contrib-
ute to the rapid conversion of African wood-
land to grassland (Buechner and Dawkins
1961; Laws 1970; Caughley 1976; Dublin
1995; Duffy et al. 1999; Shannon et al. 2011).

Despite the strength and extent of this in-
teraction, the evolutionary underpinnings
of these behaviors remain unclear. Usually
viewed as a trophic interaction—elephants
topple trees to feed on canopy vegetation—
a series of observations suggest this might
not be entirely accurate. First of all, bulls ac-
count for most tree toppling, suggesting a so-
cial or sexual function to tree damage (Guy
1976; Dublin 1995). Furthermore, bulls fre-
quently engage violently with their environ-
ment; Poole (1987) recorded an average of
one aggressive interaction with a “nonele-
phant element” once every ten minutes for
lone, musth bulls. And, more recently, Midg-
ley et al. (2005) detail support for a sexual
function, arguing that tree toppling is de-
rived from male dominance competition,
an important component of male reproduc-
tive success (Moss 1983; Poole 1989). In es-
sence, support for a sexual explanation of the
engineering effects of elephants means that
the diverse ecological effects of tree toppling
by elephants are consequences of belligerent
aggression driven by periodic hyperaggres-

sive sexually selected behaviors (musth),
which “spills over” to nonelephant features
such as trees, utility poles (Midgley et al.
2005), and even other large herbivores (Slo-
tow et al. 2000). Together, these observations
indicate the behavioral mechanism underly-
ing landscape-scale engineering of Africa’s
most treasured and iconic ecosystem is sex-
ual; a notable modification to prevailing eco-
logical perspectives.

Eco-Evolutionary Dynamics of Sexual

Selection: Generalities

and Future Directions

Thus far, our survey has attempted to ad-
vance the evolutionary ecology of sexual se-
lection by linking traits evolved by sexual
selection with ecological processes influ-
enced by them. Although our narrow goal
was to illustrate these links with a variety of ex-
amples, our broader goal was to facilitate an
eco-evolutionary perspective on SSTs.We be-
lieve our survey contributes substantially to
this latter objective, yet most opportunities
for investigating the eco-evolutionary dynam-
ics of sexual selection remain. First, a broad
eco-evolutionarymodel integrating sexual se-
lection does not yet exist. Efforts to include
sexual selection in eco-evolutionary dynam-
ics are generally population-based, asking
whether evolution by sexual selection favors
or disfavors adaptive evolution and increased
populationmeanfitness (Hendry et al. 2018).
More specifically, they ask whether condi-
tion-dependent sexual selection facilitates
adaptation by purging genomes of genetic
load (Whitlock 2000; Lorch et al. 2003;
Candolin and Heuschele 2008; Whitlock
and Agrawal 2009). These fitness-based ap-
proaches to eco-evolutionary dynamics are
quite different from the trait-based perspec-
tive we take here. Indeed, these approaches
remain surprisingly isolated despite oppor-
tunities for integration and synthesis (Svens-
son 2018). Consequently, our understanding
of whether and how ecological feedbacks
arise from sexual selection is fragmentary
and incomplete. Below, we highlight several
opportunities for future research on the eco-
evolutionary dynamics of sexual selection.
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All of the topics below have been investigated
to some degree but have yet to focus on the
effects of SSTs on ecological systems—the
phenotype-ecology feedbacks that have made
eco-evolutionary perspectives such an appeal-
ing model for understanding contemporary
ecological dynamics. Our approach here is
not to review these models in detail, but to
point out where the evolution of SSTs is likely
to influence ecological dynamics.

intrapopulation niche variation

The eco-evolutionary dynamics of intra-
population variation has fascinated evolu-
tionary biologists for many decades, however,
interest among ecologists is more recent
(Araújo et al. 2011; Bolnick et al. 2011; Des
Roches et al. 2018). Several recurring pat-
terns of sex-specific ecological niche variation
arose during our review. First, divergent sex-
ual phenotypes often have divergent pat-
terns of resource use along habitat and
dietary axes (see Supplemental Table 1). Sec-
ond, intersexual niche variation can some-
times resemble a nested pattern of resource
use. For example, male skinks include larger,
well-defended prey in their diet as well as
smaller items used by females (Vitt and Coo-
per 1985; Figure 1a). Third, sexual behaviors
that cause sexes to aggregate or synchronize
reduce the degree of intersexual spatial niche
separation. For example, sexual segregation
during nonbreeding seasons is followed by
coalescence once reproductive opportunities
return (Blanco-Fontao et al. 2012, 2013).

In addition, many species exhibit heritable
intrasexual polymorphisms in behavior, mor-
phology, and/or physiology (Gross 1984,
1985; Sinervo and Lively 1996; McKinnon
and Pierotti 2010). Despite the potential for
intrasexual phenotypic variation to influence
niche variation, surprisingly few studies actu-
ally demonstrate whether such polymor-
phisms translate to niche variation (viz.,
Colborne et al. 2013; Lattanzio and Miles
2016; Figure 1b). We do not know why evi-
dence for linkages between intrasexual poly-
morphism and niche variation resource is so
rare. One possibility is that polymorphisms
underlying intrapopulation niche variation

go unnoticed without obvious phenotypic
indicators such as coloration and size (Sven-
sson et al. 2006; Dall et al. 2012). Indeed,
even in the bluegill sunfish, a long-standing
model of intrapopulation variation in forag-
ing ecology, a sexually selectedmale polymor-
phism with substantial effects on habitat use
and trophic niche (Colborne et al. 2013; Fig-
ure 1c) went overlooked for decades (Gross
and Charnov 1980; Mittelbach 1981, 1983;
Werner and Mittelbach 1981; Gross 1982).

Given the striking phenotypic differences
among and within sexes we suspect many
cases of intrapopulationniche variation driven
by sexual selection exist. Despite decades of
interest in the evolution of intrapopulation
niche breadth by sexual selection (Schoener
1967, 1968; Shine 1989), inclusion of sexual
selection in syntheses of intrapopulation var-
iation is relatively rare (Araújo et al. 2011;
Bolnick et al. 2011; Des Roches et al. 2018).
Why this exemption persists is unclear. Sev-
eral decades ago, Schoener (1967) suggested
large intersexual diet and habitat differences
in the lizard, Anolis conspersus, might reduce
intrapopulation resource competition and
allow for higher total population densities.
But, as far as we can tell, this logical and test-
able hypothesis has yet to be evaluated rig-
orously or extended to intrasexual niche
variation. At this point, hypothesizing specific
ecological feedbacks arising from evolved in-
ter- and intrasexual diversity is a logical next
step in the development of eco-evolutionary
theory. It seems clear that future researchpro-
grams focused on the eco-evolutionary dy-
namics of population niche variation should
investigate the contribution sexual selection
makes to the evolution of intrapopulation
niche variation.

intralocus sexual conflict

and population mean fitness

Here we have shown that the ecological
effects of SSTs often arise because of a neg-
ative fitness effect on the opposite sex. For
instance, infanticide and sexual harassment
can reduce population size because they
decrease the average female fitness (Ran-
kin and Kokko 2006, 2007). These interac-
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tions represent interlocus sexual conflict,
antagonistic interactions between individu-
als arising from divergent evolutionary in-
terests of the sexes (Trivers 1972; Parker
1979; Chapman et al. 2003). Conflicts arise
because males often express traits that are
antagonistic to thefitnessof females.Counter-
adaptationscanresultinanevolutionary“arms
race” between males and females called sex-
ually antagonistic coevolution. The accumu-
lated negative effects of interlocus conflict on
individual fitness can be detrimental for the
population.

Intralocus sexual conflict is also likely to
negatively impact population mean fitness.
Because sexes are under divergent selection,
the fitness benefits of expressing sexual traits
are sex-specific (Trivers 1972; Parker 1979;
Chapman et al. 2003; Rankin et al. 2011).
Therefore, expression of SSTs such as or-
naments or weapons in females due to an
underlying genetic correlation can have neg-
ative consequences for female fitness (e.g.,
Robinson et al. 2006). Pervasive sexual di-
morphism suggests that many species miti-
gate costs of sexually antagonistic selection
by evolving regulatory and genetic mecha-
nisms that minimize intralocus sexual con-
flict (Fairbairn 1997; Dean and Mank 2016;
Mank 2017; Wright et al. 2018). However,
the resolution of intralocus sexual conflict
is often incomplete, resulting in an evolution-
ary “tug-of-war” in which one or both sexes
are displaced from hypothetical fitness op-
tima (Rice 1992; Bedhomme and Chippin-
dale 2007; Kruuk et al. 2008; Bonduriansky
and Chenoweth 2009; Cox and Calsbeek
2009). Intralocus sexual conflict can there-
fore be viewed as sources of population-level
maladaptation—depressing mean fitness in
one or both sexes depending on the relative
strength of antagonistic sexual selection
(Rice 1992, 1996; Arnqvist and Tuda 2010).

What is important from an ecological per-
spective is that effects of maladaptive sexual
trait expression will affect trait means and vi-
tal rates in both sexes—a fitness cost termed
“gender load” or “sexual dimorphism load”
(Rice 1992; Arnqvist and Tuda 2010). For in-
stance, relatively strong sexual selection for
intrasexual weapons and aggression may

be deleterious for male survivorship, but it
may also depress female life span and fecun-
dity because of an underlying genetic corre-
lation. Theory and experimental evidence
indicate that these effects on population mean
fitness are a consequence of unmitigated sex-
ually antagonistic selection, yet data from nat-
ural systems are relatively rare (Bonduriansky
and Chenoweth 2009; Cox and Calsbeek
2009; vanDoorn 2009;Maklakov andLummaa
2013; Adler and Bonduriansky 2014; Berger
et al. 2016b). Nevertheless, several field stud-
ies provide good empirical support for re-
duced female fecundity and survivorship due
to gender load (Robinson et al. 2006; Foerster
et al. 2007; Stulp et al. 2012; Swierk and
Langkilde 2013).

There is abundant scope for future explo-
ration of eco-evolutionary dynamics from an
intralocus sexual conflict perspective (Svens-
son 2018). In general, empirical study of
intralocus sexual conflict has been restricted
to the laboratory, leaving exciting opportuni-
ties for extension into natural systems. In our
opinion, further empirical work should focus
on examining the spatial and temporal varia-
tion in gender load, what ecological factors
exacerbate or ameliorate gender load, how
readily mitigating adaptations evolve, and
how inter- and intralocus conflicts interact.
But,moregenerally, aneco-evolutionary frame-
work integrating intralocus sexual conflict
needs to be developed before the field can
advance.

regulation of populations

by sexually selected traits

Despitearecentsurgein interest,eco-evolu-
tionary thinking has been around for decades
(Schoener 2011). An early example is the
“Chittyhypothesis”(CH; Figure2),aneco-evo-
lutionarymodel of intrinsicpopulation regula-
tion driven by density-dependent evolution
of sexually selected behavior. Briefly, Chitty
hypothesized that density-dependent evolu-
tion of traits such as male aggression and in-
fanticide could contribute to population
regulation (specifically, cycling) in rodents
(Krebs 1964, 1978; Chitty 1967). After de-
cades of investigation and controversy, sup-
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port for the CH (and intrinsic control in gen-
eral)remainsweak;alternativemodelsofpop-
ulation dynamics favoring extrinsic factors
such as predation and resource supply have
generally prevailed (Krebs 2013).

But, in recent years, an increasing interest
in thecontributionofbehaviorandsexualcon-
flict to population dynamics has revealed ele-
ments of CH in a variety of systems (Kokko
and Rankin 2006; Holman and Kokko 2013).
First, sexually selected male-male aggression
has been shown to be heritable in a variety of
systems, including ones in which there is
intralocus (Mokkonen et al. 2011) and inter-
locus sexual conflict (Horth 2003; Horth et al.
2010). Second, sexual selection on aggression
isdensitydependent;Knell(2009)showedthat
the reproductive fitness advantage of aggres-
sion is variable but tends to favor aggressive
males at high density—a positive density-
dependent reproductive advantage of aggres-

sion. Third, nonsexual selection on male
aggression can be negatively density depen-
dent. For example, Horth and Travis (2002)
show that survival of aggressive male eastern
mosquitofish (Gambusia holbrooki) is negatively
related to the density of aggressive male
morphs. And, fourth, effects of aggressive
males on population growth rate can be neg-
atively density dependent. For example, in
a damselfly (Ischnura elegans) high frequency
sexual harassment has negative impacts on
female fecundity (Gosden and Svensson
2009). In all of these cases, the negative ef-
fects of SSTs on population mean fitness
contributes to declining population abun-
dances that limit the fitness benefit of the
SST—a core mechanism underlying the CH
(Figure 2).

Although evidence for individual elements
of the CH have been accumulating for years,
a clear illustration that density-dependent evo-

Figure 2. Intrinsic Population Regulation Via Microevolutionary Change in Sexually Selected Male

Aggression

The model is adapted from that initially presented in Krebs (1964, 1978). The outside ring depicts the evolution-
ary change in the proportion of the population with aggressive phenotypes. The inner ring depicts the concurrent
change in population density that arises from and drives selection on aggressive phenotypes. “Eco-evo” indicates an
evolutionary change arising from ecological change, in this case, the effect of population density on the proportion
of the population composed of aggressive phenotypes. “Evo-eco” indicates an ecological change resulting from evo-
lution in the population. Note that evolutionary and ecological cycles are offset indicating a lag effect of density-
dependent selection on phenotypic evolution that perpetuates the eco-evolutionary cycle.
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lution of a SST can regulate population dy-
namics in a single systemhas remained elusive.
However, a recent summary of long-term
data on western bluebirds (Sialia mexicana)
reveals density-dependent selection onmale
aggression; culminating in what Duckworth
and Aguillon (2015) tentatively report as a
causal relationship between aggression and
population density that causes populations
to fluctuate due to density-dependent trait
evolution. Specifically, as predicted by CH,
selection for male aggression is positively
density dependent and fecundity selection
on aggressive males is negatively density de-
pendent, presumably from a fecundity-sex-
ual selection tradeoff.

Widespread evidence of intrinsic popula-
tion regulation by SSTs suggests the eco-evo-
lutionary dynamics comprising the CH may
not be uncommon. Indeed, by relaxing the
“cycling” component of the CH and looking
beyond rodent systems, many of the studies
cited here clearly suggest that density-depen-
dent evolution of a SST can generate a nega-
tive feedback on population density—an
interaction that could perpetuate reciprocal
eco-evolutionary feedbacks (Figure 2). Nev-
ertheless, as discussed in Duckworth and
Aguillon (2015) and Krebs (1978), separat-
ing cause from effect presents substantial
challenges to evidencing the CH.

General Discussion

The prevailing approach to the evolution-
ary ecology of sexual traits is one in which
ecological forces depress the viability of the
bearer through natural selection (Andersson
1994).Here, we extend this perspective by ar-
guing that SSTs also have effects on ecologi-
cal systems. We believe four generalities
uncovered by our review exemplify these ef-
fects. First, a broad range of traits evolve by sexual
selection. In addition to ornaments and intra-
sexual weapons, sexual selection targets traits
such as locomotion, spacing behavior, and
phenology. Second, ecological consequences of
sexual selection can arise indirectly. Evolution
of SSTs such asmale body size can have pleio-
tropic effects on a range of traits due to ge-
netic or developmental correlations. Although

many traits arise merely as byproducts of sex-
ual selection (e.g., intraspecific variation in
trophic ecology routinely arises as a byprod-
uct of sex-specific body and/or head size
evolution), they nevertheless have diverse
and important consequences for fundamen-
tal ecological interactions. Third, behaviors
evolved by sexual selection have major impacts on
interspecific interactions and population dynamics.
Sexual selection acts on a broad range of
traits—many of which are not traditionally
recognized as SSTs. Nevertheless, behaviors
modified by sexual selection such as infan-
ticide, sexual harassment, and male-male
aggression have substantial effects on popula-
tion dynamics. Fourth, sexual selection underlies
ecological variation at all levels of ecological organi-
zation. Here, we show that SSTs shape inter-
specific interactions, influence population
dynamics, and may influence ecosystem-
scale processes. But if SSTs are important,
why is there not a widespread appreciation
of these pervasive and diverse ecological ef-
fects? Several reasons may underlie a his-
torical tendency to overlook the ecological
consequences of SSTs.

First, not all intersexual phenotypic diver-
sity is driven by sexual selection; fecundity
and viability selection also drive the evolution
of intersexual diversity (Hedrick and Temeles
1989). Although theory suggests that disrup-
tive viability selection onnonsexual resources
(e.g., food) can contribute to sexual dimor-
phisms (Slatkin 1984; Bolnick and Doebeli
2003), unambiguous empirical support for
this ecological-causation hypothesis is limited
(Selander 1966; Schoener 1967; Dayan et al.
1989; Temeles et al. 2000, 2010). Indeed,
Fairbairn’s (1997) review of sexual dimor-
phism suggests that sexual and fecundity
selection account for many of the sexual di-
morphisms in nature. And, more recently, a
review of dimorphisms in fighting traits re-
veals that the strong male bias in weaponry,
and a tendency for herbivores to evolve di-
morphic fighting morphology, strongly sup-
ports the sexual selection hypothesis as well
(Rico-Guevara and Hurme 2019). Further-
more, one of the best-known examples of
the ecological-causation hypothesis for sex-
ual dimorphism (bill dimorphism in hum-
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mingbirds) has been undermined by data
showing thatmale billmorphology evolves by
male-male combat (Rico-Guevara and Araya-
Salas 2015; Rico-Guevara and Rubega 2017).
It is important to note, however, that sexual
selection, fecundity, and ecological-causa-
tion explanations for sexual dimporphism
are not mutually exclusive (Hedrick and Te-
meles 1989; Shine 1989; Fairbairn 1997).We
speculate that the practical difficulty of pars-
ing the contributions of multifarious selec-
tion might have dissuaded empiricists from
partitioning fitness into components; thus
explaining the historical tendency to under-
estimate the role of sexual selection in the
evolution of intersexual ecological variation.

Second, work on the evolutionary ecology
of sexual selection has generally focused on
morphological traits such as conspicuous or-
naments and signals rather than behavioral
orphysiological traits—abias that coulddivert
attention from important eco-evolutionary
links between sexual selection and ecology
(Irschick et al. 2007). Indeed, elaborate
SSTs serving little purpose outside of mate
attraction are arguably the most familiar
traits evolved by sexual selection. But imag-
ining substantial ecological effects driven by
the expression of such traits (e.g., fin redness
or spot size) seems particularly challenging.
We believe this focus on traits employed
solely during sexual display is far too narrow
to represent the ecological consequences of
sexual selection. Indeed, most (if not all)
traits are conceivably shaped by sexual selec-
tion if they influence an individual’s ability
to compete for mating opportunities (Lail-
vaux and Irschick 2006; Irschick et al. 2007,
2008; Husak and Fox 2008). For example,
work on collared lizards (Crotaphytus collaris)
has revealed strong sexual selection on loco-
motor performance—something we think
many would presume evolves via selection
on food acquisition and predator escape per-
formance (Husak et al. 2006). Clearly, recog-
nizing the range of traits subject to and
shaped by sexual selection is an important
step in drawing causal links between sexual
selection and ecological processes. We think
an eco-evolutionary perspective should in-
clude a variety of traits, determined not by

their presumed roles in sex andmate compe-
tition, but rather their measured contribu-
tion to reproductive fitness (Husak and Fox
2008). Indeed, just as conspicuous mating
signals can be shaped by sexual and natural
selection, so can all traits (Sih et al. 2004; Ball
et al. 2014).

In conclusion, advancing toward an eco-
evolutionary model of sexual selection will
requiremultiple fronts.Mutation-purgingmod-
els show increasing promise (Lumley et al.
2015; Jacomb et al. 2016; Godwin et al. 2018),
as do conflict-based models (Arbuthnott et al.
2014; Chenoweth et al. 2015; Berger et al.
2016a; Rowe et al. 2018). But we feel that
the scope of an eco-evolutionary model of
sexual selection should extend beyond the
amelioration or amendment of genetic loads
and focus more on the ecological effects of
phenotypes on species interactions and pop-
ulation dynamics. We hope that our focus
on the ecological relevance of SSTs will stim-
ulate empiricists to integrate SSTs into eco-
evolutionary dynamics—as they have for
traits typically shaped by viability and fecun-
dity selection (Hendry 2016). We have little
doubt that future work will continue to un-
cover ecologically diverse effects of sexual
selection and we look forward to seeing ad-
ditional evidience along those lines. But
whether SSTs will ever engender the same
interest as viability traits remains to be seen.
Nevertheless, SSTs such as large body size,
bite force, aggression, and infanticide should
be on the short list of traits relevant for a wide
range of ecological processes.

We also believe that inclusion of SSTs in
ecological thinking will become more com-
mon as the divide between ecologists and
evolutionary biologists is bridged by a more
integrative understanding of natural systems.
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